Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor
نویسندگان
چکیده
منابع مشابه
Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning
Accurate and efficient analysis of multivariate spatio-temporal data is critical in climatology, geology, and sociology applications. Existing models usually assume simple inter-dependence among variables, space, and time, and are computationally expensive. We propose a unified low rank tensor learning framework for multivariate spatio-temporal analysis, which can conveniently incorporate diffe...
متن کاملLarge Margin Low Rank Tensor Analysis
We present a supervised model for tensor dimensionality reduction, which is called large margin low rank tensor analysis (LMLRTA). In contrast to traditional vector representation-based dimensionality reduction methods, LMLRTA can take any order of tensors as input. And unlike previous tensor dimensionality reduction methods, which can learn only the low-dimensional embeddings with a priori spe...
متن کاملLow-rank Tensor Approximation
Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...
متن کاملSobol Tensor Trains for Global Sensitivity Analysis
Sobol indices are a widespread quantitative measure for variance-based global sensitivity analysis, but computing and utilizing them remains challenging for high-dimensional systems. We propose the tensor train decomposition (TT) as a unified framework for surrogate modeling and global sensitivity analysis via Sobol indices. We first overview several strategies to build a TT surrogate of the un...
متن کاملLow rank tensor recovery via iterative hard thresholding
We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Smart Grid
سال: 2020
ISSN: 1949-3053,1949-3061
DOI: 10.1109/tsg.2020.2978769